Yield and Quality Performance of New Alfalfa Cultivars Under Climate-Induced Drought Stress

Mihaela POPA^{1*}, Maria SCHITEA², Elena PETCU¹, Matilda CIUCĂ¹, Daniel CRISTINA¹, Margareta NAIE³, Cãlin SALCEANU⁴ and Iulia VARZARU⁵

1 – NARDI Fundulea; 2- AAFS BUCURESTI, 3-SCDA SECUIENI, 4-SCDA CARACAL and 5-INCDBNA BALOTESTI Romania

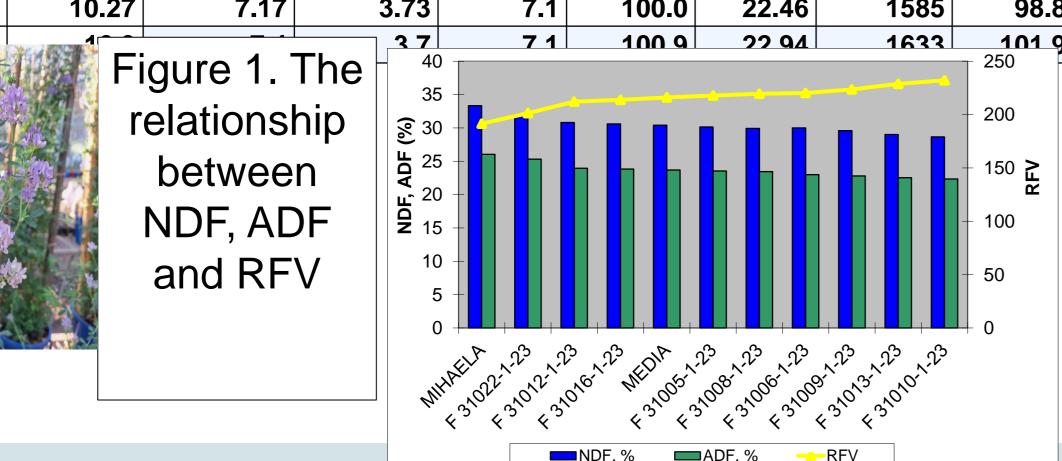
*Email: mihaela.popa@ricic.ro

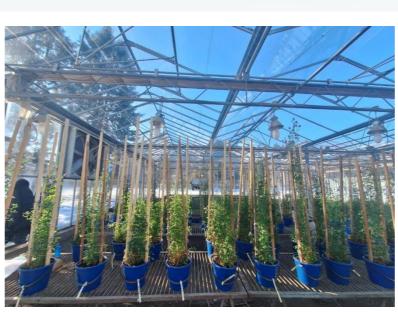
- · Alfalfa is the most important forage crop in Romania. The main objectives in alfalfa breeding are: improving quality, dry matter yield, as well as biotic and abiotic stress tolerance.
- Abiotic stress conditions cause extensive losses to agricultural production worldwide especial in perennial crops, like is alfalfa.
- Under these conditions, nine new varieties of alfalfa were studied for production, quality and adaptability.
- In order to shorten the breeding process, in the last year also started works that include the selection assisted by molecular markers.
- The experiments were in the second year of vegetation, they were installed in the spring of 2024 and will be studied and in the next year.

Materials and methods

The new Romanian alfalfa cultivars are synthetic ones obtained by polycross method and derived from hybrids between Romanian germplasm and different foreign sources. They are constituted from different number of progenies, from 5 components (F 31005-1-23) to 22 components (F 31022-1-23). One of the most important aims of Romanian breeding programme in alfalfa was to utilized different sources of germoplasm in order to avoid genetic vulnerability, but in the same time we had in the attention that new cultivars must to have a good phenotypic uniformity in concordance with UPOV requirements. The trials were carried out in 2025, in 3 locations: NARDI Fundulea and ARDS Secuieni in dry land and ARDS Caracal under irrigated conditions.

The experimental design was a randomized complete blocks with 4 replications, with 15 m²/plots in Fundulea and with 10 m²/plots in Secuieni and Caracal.


RESULTS


The monthly rainfalls and temperatures recorded at NARDI Fundulea, ARDS Secuieni and ARDS Caracal in agricultural year 2024-2025

	Year	Month						Sum/						
I Cai	X	ΧI	XII	I	II	III	IV	V	VI	VII	VIII	IX	average	
							Rainfall (n	nm)						
		1					NARDI FUND					ı	1	
	2024-2025	7.8	49	85	10.8	22.8	25.6	29.6	89	9.2	42.6	4	10.8	386.2
Μι	ılti year average	42.3	42	44	35	32	37	45	63	75	71	50	49	584.3
	Difference ±	-34.5	7.0	41.0	-24.2	-9.2	-11.4	-15.4	26.0	-65.8	-28.4	-46.0	-38.2	-198.1
ARDS SECUIENI														
	2024-2025	35.8	21.4	36.2	12.2	4.2	32.6	12.4	116.4	8.5	73.2	8.6	31.2	392.7
Mι	ılti year average	36.9	27.7	25.4	19.6	19.2	26.3	44.9	64.3	84.7	80.6	58.0	44.3	531.9
	Difference ±	-1.1	-6.3	10.8	-7.4	-15.0	6.3	-32.5	52.1	-76.2	-7.4	-49.4	-13.1	-139.2
	ARDS CARACAL													
	2024-2025	3.4	55.2	113.6	4.4	6.4	19	22	104.6	21.8	0	30.4	112	509.8
Mu	ti year average	46	37	39.1	30.8	26.3	34.2	47.8	58.6	69.7	62.1	46.6	39.6	492.8
	Difference ±	-42.6	18.2	74.5	-26.4	-19.9	-15.2	-25.8	46	-47.9	-62.1	-16.2	72.4	+17.0
	TEMPERATURE (°C)													
						l	NARDI FUND	ULEA						
	2024-2025	16.1	8.5	4.3	1	7.6	8.5	15	16.4	26.1	27.7	26	20	14.79
Mul	ti year average	11.3	5.4	0	-2.4	-0.4	4.9	11.3	17	20.8	22.7	22	17.5	10.87
	Difference ±	4.8	3.1	4.3	3.4	7.2	3.6	3.7	-0.6	5.3	5	4	2.5	3.92
	•						ARDS SECU	JIENI						
	2024-2025	10.2	2.8	1.4	1.9	-2.5	7.4	10.5	12.9	20.6	22.2	20.9	16.8	10.4
Mul	ti year average	9.2	3.6	-1.5	-3.7	-1.9	2.8	9.6	15.4	18.9	20.4	19.7	15.1	9.0
	Difference	1.0	-0.8	2.9	5.6	-0.6	4.6	0.9	-2.5	1.7	1.8	1.2	1.7	1.5
							ARDS CAR	ACAL						
	2024-2025	13.0	4.5	4.0	2.4	-1.3	9.3	12.5	16.0	24.0	23.9	24.4	16.0	+12.39
Mι	ılti year average	11.7	5.1	0.3	-1.3	0.8	6.0	12.0	17.7	21.6	22.8	23.5	17.6	+11.48
	Difference	1.3	- 0.6	3.7	3.7	-2.1	3.3	0.5	-1.7	2.4	1.1	0.9	-1.6	+0.91

Dry matter and crude protein yield achieved by new alfalfa cultivars in the field test, in 2025

Genotype	NARDI Fundulea	ARDS Caracal	ARDS Secuieni	Average		C.P. from D.M.	Crude protein	
	(t ha ⁻¹⁾	(t ha ⁻¹⁾	(t ha ⁻¹⁾	(t ha ⁻¹⁾	% from ct.	%	(kg ha ⁻¹⁾	% from ct.
F 31009-1-2023	10.26	7.83	4.02	7.4	104.4	23.38	1723	107.5
F 31006-1-2023	11.08	7.11	3.62	7.3	103.0	23.67	1721	107.3
F 31013-1-2023	10.33	7.59	3.81	7.2	102.6	23.72	1718	107.2
F 31005-1-2023	10.21	7.77	4.07	7.4	104.2	22.70	1668	104.1
MIHAELA (Ct.)	10.15	7.23	3.58	7.0	99.0	22.95	1603	100.0
F 31012-1-2023	10.16	7.14	3.88	7.1	100.0	22.68	1601	99.9
F 31022-1-2023	10.41	7.53	3.09	7.0	99.3	22.72	1593	99.3
F 31010-1-2023	9.90	7.47	3.63	7.0	99.2	22.74	1592	99.3
F 31016-1-2023	10.17	7.35	3.83	7.1	100.9	22.35	1591	99.2
F 31008-1-2023	10.27	7.17	3.73	7.1	100.0	22.46	1585	98.8
		gure 1. elationsl	35	5 +	100 9	22 94	1633	250 200

August 2025 Fodder quality of new synthetic alfalfa cultivars

Genotype	NDF. %	ADF. %	RFV	% Ch.)
F 31010-1-2023	28.66	22.35	232.0	121.2
F 31013-1-2023	29.01	22.53	228.8	119.5
F 31009-1-2023	29.60	22.81	223.5	116.8
F 31006-1-2023	29.99	22.99	220.2	115.0
F 31008-1-2023	29.93	23.44	219.6	114.7
F 31005-1-2023	30.14	23.54	217.8	113.8
F 31016-1-2023	30.60	23.82	213.8	111.7
F 31012-1-2023	30.81	23.94	212.1	110.8
F 31022-1-2023	31.97	25.32	201.3	105.1
MIHAELA (Ct.)	33.34	26.04	191.4	100.0
MEDIA	30.41	23.68	216.1	112.9

in 2025, developed in NARDI Fundulea

Seed yield of the new alfalfa cultivars in 2025

			AVERAGE		
0 1	NARDI	ARDS		%	
Genotype	FUNDULEA	SECUIENI	(kg ha ⁻¹)	from	
				control	
F31013-1-2023	201	738	470	116	
F31005-2-2023	256	698	477	118	
F31008-1-2023	227	691	459	114	
F31012-1-2023	211	683	447	111	
F31010-1-2023	220	679	450	111	
F31006-2-2023	229	667	448	111	
F31016-1-2023	230	640	435	108	
MIHAELA (Ct.)	223	584	404	100	
F31009-1-2023	255	561	408	101 F	
F31022-1-2023	232	553	393	97	
Average	228	649	439	109	

Fodder yield achieved by new alfalfa cultivars developed in NARDI Fundulea, in 2025

Genotype	NARDI Fundulea	ARDS Caracal	ARDS Secuieni	Average	
	(t ha ⁻¹⁾	(t ha ⁻¹⁾	(t ha ⁻¹⁾	(t ha ⁻¹⁾	% from control
F 31009-1-2023	36.9	25.8	13.6	25.4	105.1
F 31005-1-2023	36.7	25.2	13.8	25.2	104.3
F 31016-1-2023	36.6	25.2	13.3	25.0	103.4
F 31006-1-2023	39.9	22.8	11.8	24.8	102.6
F 31013-1-2023	37.1	24.9	12.4	24.8	102.5
F 31010-1-2023	36.3	24.9	12.4	24.5	101.4
F 31008-1-2023	36.9	23.7	12.7	24.4	101.0
MIHAELA (Ct.)	36.5	24	12.1	24.2	100.0
F 31012-1-2023	36.5	23.4	12.5	24.1	99.7
F 31022-1-2023	37.4	24.6	10.36	24.1	99.7
Average	37.1	24.3	12.4	24.6	101.6
% from Fundulea	100.0	65.5	33.4	72.8	

In 2025, 20 alfalfa genotypes were analyzed. Molecular analyses consisted of continuing analyses with SSR markers and initiating analyses with KASP markers.

KASP markers were created, using the PolyMarker software, based on the sequences of some SNPs from the specialty literature (Medina et al., 2024), with localization within genes with a direct or indirect role in alfalfa defense against biotic and abiotic stress factors. In this phase, three KASP markers were analyzed: 3_74150027, 6_11528532 and 7_65295546.

Molecular analysis with marker 7_65295546 revealed the separation of the material into three groups (a, a2 and a3). The majority of genotypes being in group a2 (13 lines). Comparative analysis of molecular results with phenotypic ones will allow selection of favorable haplotypes.

Molecular analyses with 9 SSR markers (AW01, AW11, AW123, AW300, AW690665, BE112, M230, MTIC432 and MS27) revealed genetic variability in the analyzed alfalfa germplasm, observing markers that determined the visualization of multiple alleles at a single locus (BE112, AW690665, M230, MTIC432 and MS27) or with amplification of two loci (mtic432).

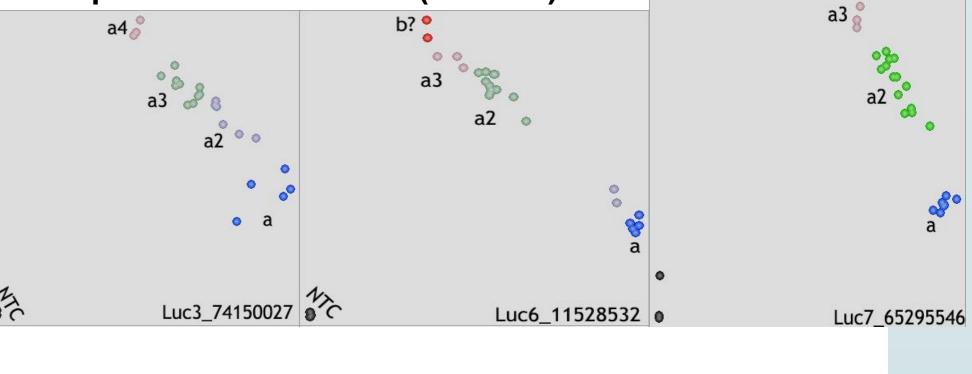


Figure 2. Separation of germplasm analyzed with KASP markers.

CONCLUSIONS

- > The new Romanian alfalfa cultivars represent a genetic progress achieved in the alfalfa breeding program of NARDI Fundulea; all new cultivars demonstrated a good adaptability in the conditions of 2025, with long periods of drought and high temperatures. In this conditions, only two harvest was obtained for alfalfa in the second year of vegetation;
- > The yields obtained in all three testing centers (Fundulea, Caracal, Secuieni) were very low and represented less than 50% of the potential of the alfalfa varieties.
- > On average in the three test centers, the best behavior was the varieties: F 31009-1-24, F31006-1-24, F31013-1-24 and F 31005-1-24 with a production of 7.2-7.4 t ha⁻¹ dry matter and 1668- 1723 kg ha⁻¹ crude protein (4.1-7.5% more than Mihaela, the control variety;
- The new genotypes are characterized by very good quality (more than 20% C.P. and a relative food value of 201 -236); respectively, SUPREME category feed, according to the US scale. The research aimed at the assisted selection of molecular markers for resistance/tolerance to diseases and drought, highlighted a great variability and creates the premises for their use in the alfalfa breeding program in Fundulea.

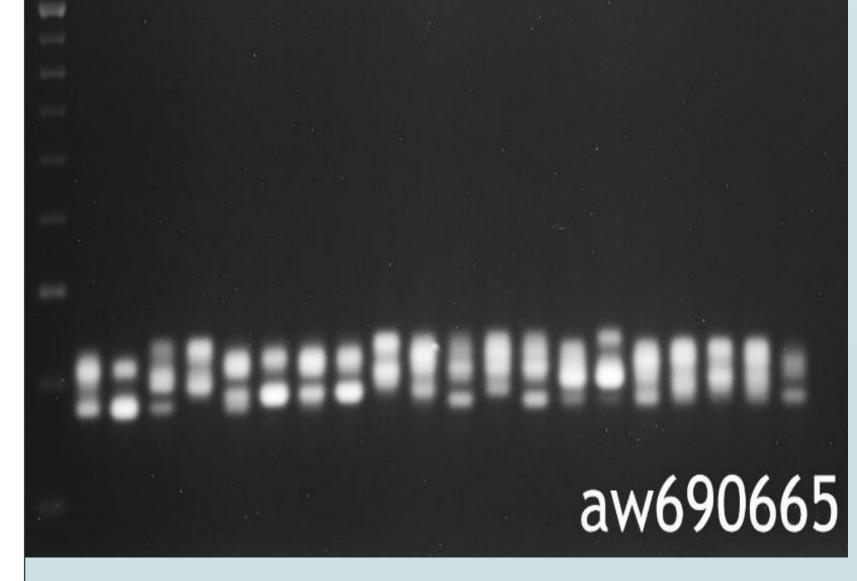


Figure 3. Molecular analyses with marker AW690665

