

STAŢIUNEA DE CERCETARE DEZVOLTARE AGRICOLĂ TELEORMAN

Management of Genetic Biodiversity by Plant Breeding and Sustainable Agricultural Technologies 22 Nov. 2024

Cultivar and environment on the impact of yellow rust (*Puccinia striiformis*) in Triticale

Maria Voica^{1*}, Delcea Alina Mihaela¹, Tunaru Ioan¹, Bălțatu Mariana¹, Justina Lobonțiu², Zsuzsa Domokos²,Cecilia Bănățeanu³, Beniamin Emanuel Andras³

¹ SCDA Teleorman, ²SCDB Tg. Mureş, ³ SCDA Livada

INTRODUCTION

Triticale (*×Triticosecale Wittmack*), a synthetic intergeneric hybrid between wheat (Triticum sp.) and rye (Secale sp.) has gained considerable importance in the past decades. It combines desirable traits of both parents (Salmanovicz et al., 2013), the high grain protein content of wheat with the disease resistance and environmental tolerance of rye to abiotic stress conditions such as aluminum toxicity, drought, salinity, acidic or waterlogged soils (Kuleung et al., 2004). Triticale was long considered very resistant to rusts (Schevchenko and Karpachev, 1985) but later, several rust epidemics caused by Puccinia species have been reported in triticale (Bekele et al. 1985; Haesert et al.1987; Wilson and Shaner 1989a,b; Iliev et al. 1990; Zwer et al. 1992; Zamorski 1994; Schinkel, 2002; Sodkiewicz and Strzembicka, 2004; Mergoum et al., 2009; Mikhailova et al., 2009). Among these, yellow (stripe) rust (Puccinia striiformis, Pst), emerged in the past decades as a real economic threat in triticale (Wiese, 1987; Singh and Saari 1991; Guedes-Pinto et al., 1996). In Romania, Pst, which is generally more adapted to the humid and cooler environments ($3^{0}C - 15^{\circ}C$), occured rather sporadicaly in the past (Ittu et al., 1989) and was rarely seen on triticale. However, a 91,7% attack of Pst on untreated plots of triticale was registered in 2018 (Goga, 2019) and attacks varying from 10 to 90% were reported on triticale in Western Romania (Cotuna et al, 2019, 2023). In 2023 symptoms of disease were observed on triticale in 2023, even in the South of Romania since March (Voica et al., 2023), and heavy attacks were reported in triticale in North-West and in Transylvania (Galit et al., 2023). Results presented by Galit et al. (2023) suggested that the stripe rust races present in 2023 were better adapted to higher temperatures.

MATERIAL AND METHODS

Triticale released cultivars and breeding lines originating from the breeding program of NARDI Fundulea were tested in 2022-2023 and 2023-2024 seasons in yield trials with balanced square lattice design with twenty-five entries and three replications, on five or ten m² harvestable plots without irrigation and using the usual crop management. Out of the eight locations which performed the trials, in three locations stripe rust was strong enough to have impact on grain yield, as expressed by a correlation between disease scores and yield r > 0.3 in at least one year. These locations included ARDS Livada (47°52'N latitude -23°08'E longitude), RDSB Târgu-Mureș (46°32'N latitude- 24°33'E longitude) and ARDS Teleorman (44°07'N latitude - 25°45'E longitude). We included in the analysis twenty-three cultivars which were tested in both years.

In 2023-2024 at Tg. Mureş and Teleorman preliminar yield trials with one replicat ion, including new lines selected at ARDS *Teleorman were organized in the same conditions.*

Intensity of Puccinia striiformis was visually scored in the field under natural infection and uncontrolled conditions, on a scale between 1-9, where 1(resistant) and 9 (susceptible) (McNeal et al., 1971) and grain yield was expressed as kg ha⁻¹ at 14% moisture.

Foto.2. Attack of the

pathogen Puccinia

striiformis

Foto.1. Attack of the pathogen Puccinia striiformis

Table 2. ANOVA for stripe rust score and grain yield in the six analyzed yield trials

Source of Stripe rust score				Grain yield			
Variation	df	MS	F	MS	F	F crit	
Cultivars	22	6.570	5.038	5386448	5.887	1.639	
Environments	5	159.176	122.060	1.54E+08	168.078	2.296	
G*E interaction	110	1.304		914853.8			

Table 3. Correlation between stripe rust scores registered in the six analyzed trials

	Livada23	Livada24	TgM23	TgM24	TR23	TR24
Livada 23	1					
Livada 24	0.52	1				
Tg. Mures. 23	0.62	0.81	1			
Tg. Mures 24	0.47	0.52	0.55	1		
Teleorman 23	0.58	0.49	0.51	0.62	1	
Teleorman 24	0.37	0.24	0.32	0.29	-0.09	1

Table 5. Deviations from the regression of grain yield on stripe rust score (kg/ha)

			Yield trial			
CULTIVAR	Livada 2023	Tg Mures 2023	Teleorman 2023	Livada 2024	Tg Mures 2024	Average (kg/ha)
ZARAZA	3100	707	359	1034	362	1112
T14187	1921	130	607	1857	1024	1108
PLAI	2024	84	-377	1413	553	739
T15038	575	121	614	974	591	575
TF2	2811	127	-760	453	-637	399
FDL CORDIAL	304	90	578	652	353	396
T16026	-155	-844	188	1668	612	294
UTRIFUN	443	125	-260	995	145	290
STIL	27	56	-412	1013	-40	129
T16322	740	-833	408	-309	-49	-9
ZORI	-1431	119	208	943	-260	-84
T14225	-483	-236	308	31	-228	-122
PISC	517	126	-111	-1390	-553	-282
ODA FD	-1282	111	-99	527	-701	-289
T16007	84	-914	386	-974	-372	-358
CASCADOR	761	103	101	-2088	-945	-414
FDL ASCENDENT	-1404	50	204	-1077	-71	-460
T15183	-1373	86	-767	-192	-241	-497
TULNIC	-806	96	239	-1135	-932	-508
HAIDUC	-23	126	-348	-1800	-674	-544
TITAN	-1875	112	141	-848	-659	-626
NEGOIU	-1242	127	-788	-1741	482	-633
ZVELT	-2766	108	-269	-928	378	-695
					LSD 5%	248

Table 1 Average temperatures and rainfall at three locations in 2023 and 2024

Specification		LIVADA		Tg. M	UREȘ	TELEORMAN	
Month Decade		Temp.	Rainfall	Temp.	Rainfall	Temp.	Rainfall
		(^{0}C)	mm	(^{0}C)	mm	(^{0}C)	mm
	Ι	5,4	4.0	7.2	9.0	6.1	6.0
MARCH	II	5,9	14.2	7,2	12.5	6.4*	10.0
2023	III	7,9	8.9	9,4	208.2	7.8	8.0
	Mean/Sum	6,4	27.1	7,9	229.7	6,8	24.0
	Ι	6,4	20.4	8,2	22.7	5.2	36.0
APRIL	II	11,6	9.8	12,0	6.8	11.1	10.0
2023	III	10,9	43.1	13,0*	29.5	11,0	9.0
	Mean/Sum	9,6	73.3	11,1	64.0	9,1	55.0
MAY 2023	Ι	14,4	6.3	14,3*	8.0	13,5	8.0
	II	15,2	10.9	15,9	5.0	15.2	5.5
	III	19,4	2.5	18,4*	15.5	18.4	40.5
	Mean/Sum	16,3	19.7	16,2	28.5	15,7	54.0
	Ι	9.2	9.8	8.98	15.0	7.0	3.0
MARCH	II	7.5	15.2	6.77	30.0	7.4	27.5
2024	III	11.2	15.0	11.1	5.0	11.3	19.0
	Mean/Sum	9.3	40.0	9.0	50.0	8.6	49.5
	Ι	14.8	9.0	14.6	3.0	15.7	2.0
APRIL	II	12.5	16.5	13.6	31.0	16.1	13.0
2024	III	12.1	16.1	12.1	32.0	13.4	19.0
, F	Mean/Sum	13.1	41.0	13.4	66.0	15.1	34.0
	Ι	17.3	8.4	16.1	22.0	15.7	12.5
MAY	II	15.9	6.5	14.7	21.0	15.0	4.5
2024	III	19.1	15.3	17.7	18.0	19.0	15.0
	Mean	17.4	30.2	16.1	61.0	16.6	32.0

Table 4. Stripe rust scores and grain yield of twenty-three triticale cultivars, averaged over six trials (3 locations x 2 years)

Stripe rust score				Grain yield (kg/ha)			
					Averaged		
	Averaged over				over six		
CULTIVAR	six trials	Variance		CULT IVAR	trials	Variance	
ZARAZA	2.5	2.7		ZARAZA	7113	3323765	
T16026	4.3	9.1		T14187	5046	8576397	
T16007	4.5	7.1		PLAI	4999	7664827	
TF2	4.7	9.9		T16026	4797	8070712	
PLAI	4.8	7.8		TF2	4658	6577465	
T14225	4.8	8.6		T16007	4409	8016503	
T16322	5.0	8.0		T16322	4396	9331511	
FDL ASCENDENT	5.3	8.3		T15038	4277	7327029	
TITAN	5.5	7.9		T14225	4245	8347209	
T15183	5.5	7.5		FDL CORDIAL	3918	8998532	
STIL	5.8	10.2		UTRIFUN	3898	5528266	
ZVELT	5.8	9.4		FDL ASCENDENT	3745	9068583	
FDL CORDIAL	6.0	8.0		STIL	3732	8889848	
ZORI	6.2	10.6		T15183	3595	7772520	
T14187	6.2	6.2		ZORI	3563	6235490	
HAIDUC	6.3	9.5		TITAN	3480	7784520	
PISC	6.3	8.3		PISC	3366	7248143	
UTRIFUN	6.3	9.5		ZVELT	3283	8171507	
T15038	6.5	6.7		ODA FD	3254	7044529	
NEGOIU	6.7	9.1		TULNIC	3032	7295462	
ODA FD	6.7	9.1		CASCADOR	3023	7304757	
TULNIC	6.7	7.1		HAIDUC	2983	8355543	
CASCADOR	7.2	7.8		NEGOIU	2876	6961149	
LSD 5%	1.36			LSD 5%	1138		

Figure 1. Relationship between stripe rust attack and grain yield at Tg. Mureș

Figure2. Relationship between stripe rust attack and grain yield at Livada

Figure 3. Relationship between stripe rust attack and grain yield at Teleorman

Table 6. Correlations between weather data and the impact of stripe rust on Triticale yield (estimated by the correlation between stripe rust score and grain yield)

	Average	Rainfall	Ratio
Month	temperature ⁰ C	mm	Rainfall/Temperatur
March	0.24	0.26	0.19
April	0.61	-0.76	-0.67
May	0.28	-0.25	0.27

Figure 4. Relationship of stripe rust scores and grain yield in preliminary yield trials with Triticale lines selected at ARDS Teleorman

TR24-6

TR24

Stripe rust score (1=best, 9=worse)

9000

8500

8000

, 7500

• 7000

6500 **و**

6000

5500

5000

TR24-17

TR24-10

•• TR24-4

TR24-1 TR24-5

6000

• TR24-22

5500

5000

3500

Figure 5. Comparison between yields obtained in

4500

Grain yield at Teleorman (kg/ha)

TR24-22

6500

5500

CONCLUSIONS

Twenty-three triticale cultivars and twenty-five new lines tested in locations with high stripe rust attack in 2023 and 2024 showed significantly different disease scores, ranging from resistant to very susceptible. Best resistance to Puccinia striiformis was observed in cultivar ZARAZA and in five of the new lines. In five yield trials performed in 2023 and 2024, stripe rust had significant impact on grain yield explaining between 15 and 92% of the yield variation and in one trial susceptible cultivars did not produce any grains.

We observed large yield differences between cultivars scored similarly for rust attack, suggesting differences in partial resistance and/or tolerance to the disease. These differences suggest that their exploitation can be, along with exploiting available sources of strong resistance genes, an additional breeding objective for reducing rust induced yield losses,

The impact of stripe rust on yield was associated with lower temperatures and higher rainfall in April, which explained more than one third of the variation in coefficients of correlation between stripe rust and yield.