

"Management of Genetic Biodiversity by Plant Breeding and Sustainable Agricultural Technologies", 22 Nov 2024, Fundulea, Romania

Influence of foliar fertilization with boron and zinc for maize grain crop in the hilly area of south-western Romania

Authors: ¹Cioboată Marius Nicolae, ²Păunescu Ramona Aida, ³Florea Denisa Florența, ⁴Roșculete Cătălin Aurelian, ⁵Roșculete Elena^{*} ^{1,2,4,5}University of Craiova, Faculty of Agronomy, Craiova, Romania

³University of Craiova, SCDA Caracal, Caracal, Romania

*Corresponding author.e-mail : <u>rosculeta2000@yahoo.com</u>, <u>elena.rosculete@edu.ucv.ro</u>

For 2 years (2020 and 2021) in the hilly area of south-western Romania a single-factor maize experiment (hybrid Kapitolis FAO 410 from KWS) was established with 4 foliar fertilization variants: V1 = untreated control; V2 = Treatment 1 at BBCH 14-18 (maize with 4-6 leaves) using Lebosol products 11/ha Zinc700 + 1,51/ha Bor; V3 = Treatment 2 BBCH 24-28 (maize with 8-10 leaves) using the same products; V4 = Treatment 1 + Treatment 2.

Before the first treatment (T1) leaf and soil samples were collected and after the second treatment (T2) leaf samples from all 4 variants were collected for analysis. The foliar analysis before the first application showed normal values for nitrogen, phosphorus, calcium, magnesium, sulfur, iron, manganese, boron, iron, and molybdenum; low value for potassium; slightly low value for zinc and high value for calcium. After the application of the second treatment, zinc content values were much more improved within the leaves, boron remained constant but molybdenum content decreased a lot. Although at the borderline, the nitrogen content of leaf at T1 and T2 remained at normal value, after application of T1 + T2 it decreased from 4.6% (before application) to 2.96%.

The lowest crop yield was obtained with the untreated control - 5210 kg/ha and the highest yield with the T2 variant - 6050 kg/ha. ANOVA yield analysis showed that the yield increase of 840 kg/ha at T2 is very significant compared to the untreated control and the one at T1 + T2 of 370 kg/ha is distinctly significant compared to the untreated control and the one at T1 + T2 of 370 kg/ha is distinctly significant compared to the untreated control and the one at T1 + T2 of 370 kg/ha is distinctly significant compared to the untreated control and the one at T1 + T2 of 370 kg/ha is distinctly significant compared to the untreated control and the one at T1 + T2 of 370 kg/ha is distinctly significant compared to the untreated control and the one at T1 + T2 of 370 kg/ha is distinctly significant compared to the untreated control and the one at T1 + T2 of 370 kg/ha is distinctly significant compared to the untreated control and the one at T1 + T2 of 370 kg/ha is distinctly significant compared to the untreated control and the one at T1 + T2 of 370 kg/ha is distinctly significant compared to the untreated control and the one at T1 + T2 of 370 kg/ha is distinctly significant compared to the untreated control and the one at T1 + T2 of 370 kg/ha is distinctly significant compared to the untreated control and the one at T1 + T2 of 370 kg/ha is distinctly significant compared to the untreated control and the one at T1 + T2 of 370 kg/ha is distinctly significant compared to the untreated control and the one at T1 + T2 of 370 kg/ha is distinctly significant compared to the untreated control and the one at T1 + T2 of 370 kg/ha is distinctly significant compared to the untreated control and the one at T1 + T2 of 370 kg/ha is distinctly significant compared to the untreated control and the one at T1 + T2 of 370 kg/ha is distinctly significant compared to the untreated control and the one at T1 + T2 of 370 kg/ha is distinctly significant compared to the untreated control and the untr the same control.

Although the maize yield was high compared to the control after application of T1, it was not statistically assured. Of the yield and quality elements studied, the most stable were: test weight (values ranging from 69.9-71.8 kg/hl), protein content (values ranging from 5.79-6.55%) and fat content (values ranging from 3.13-3.26%). Large ranges of values were observed for the thousand kernels weight (values ranging from 300.3-352.4 g) and starch content (values ranging from 67.76-69.54%).

Soil	ana	lvsis

Analize SOL	Rezultat	Limita	Interpretare
рН	6.1	6.5	Ușor scăzut
Fosfor (ppm)	23	16	Normal
Potasiu (ppm)	269	121	Normal
Magneziu (ppm)	595	50	Mare
Calciu (ppm)	4361	1600	Normal
Sulf (ppm)	5	10	Scăzut
Mangan (ppm)	51	25	Normal
Cupru (ppm)	6.3	4.1	Normal
Bor (ppm)	0.87	1.6	Scăzut
Zinc (ppm)	2.2	4.1	Scăzut
Molibden (ppm)	0.03	0.6	Foarte scăzut
Fier (ppm)	621	50	Normal
Sodiu (ppm)	32	90	Foarte scăzut
C.E.C. (meq/100g)	32.3	15	Normal

Variant	Yield (kg/ha)	Difference (%)	MMB (g/1000 boabe)	MH (kg/hl)			
Control	5210	100	300.3	69.9			
T1 - BBCH 14-18	5430	104	317.8	70.07			
T2 - BBCH 24-28	6050***	116	352.4	70.05			
T1 + T2	5580**	107	337.6	71.8			
DL 5% = 145 kg/ha							
DL 1% = 368 kg/ha							
DL 0,1% = 671 kg/ha							

Varianta	Productie (kg/ha)	Amidon (%)	Proteina (%)	Grăsime/Ulei (%)
Martor	5210	69.39	5.79	3.13
T1 - BBCH 14-18	5430	68.58	6.28	3.15
T2 - BBCH 24-28	6050	69.54	5.94	3.24
T1 + T2	5580	67.76	6.55	3.26

T = 1.5 l/ha Bor + 1 l/ha Zinc700

Cob aspects depending on treatment

Results of foliar analysis

					Foliar analysis after application						
Pre-application foliar analysis			Control		T1		T2		T1 + T2		
Analysis	Result	Limit	Interpretation	Result	Interpretation	Result	Interpretation	Result	Interpretation	Result	Interpretation
Nitrogen (%)	4.6	3.5	Normal	3.0	7 Slightly low	3.55	Normal	3.62	Normal	2.96	Slightly lov
Phosphorus (%)	0.39	0.35	Normal	0.2	8 Slightly low	0.31	Slightly low	0.33	Slightly low	0.32	Slightly lov
Potasium (%)	2.13	3	Low	2.0	2 Low	2.76	Slightly low	2.16	Low	2.37	Slightly lov
Calcium (%)	0.82	0.3	Normal	0.3	7 Normal	0.49	Normal	0.52	Normal	0.4	Normal
Magnesium (%)	0.29	0.25	Normal	0.1	7 Low	0.13	Low	0.23	Slightly low	0.17	Low
Sulphur (%)	0.45	0.1	Normal	0.2	7 Normal	0.28	Normal	0.28	Normal	0.23	Normal
Iron (ppm)	347	75	Normal	19	6 Normal	158	Normal	167	Normal	147	Normal
Zinc (ppm)	29	30	Slightly low	24.	1 Slightly low	32.2	Normal	284.9	High	178.3	High
Manganese(p pm)	59.4	40	Normal	53.	8 Normal	62.4	Normal	57.5	Normal	40.1	Normal
Boron (ppm)	8.7	7	Normal	10.	2 Normal	9.9	Normal	9.1	Normal	12.5	Normal
Copper(ppm	17.8	7	High	9.	5 Normal	11.7	Normal	11.9	Normal	10.1	Normal
Molybdenum(n											

Conclusions

While boron is essential for pollination and thus for yield development, zinc plays an important role in optimal plant development. Where the farmer applied 11/ha of zinc to maize areas for the first time, the average per farm was around 6000kg/ha, which is above the average yield in previous years.

Bibliography

1. Stewart, Z.P.; Paparozzi, E.T.; Wortmann, C.S.; Jha, P.K.; Shapiro, C.A. Effect of Foliar Micronutrients (B, Mn, Fe, Zn) on Maize Grain Yield, Micronutrient Recovery, Uptake, and Partitioning. Plants 2021, 10, 528. https://doi.org/10.3390/plants10030528 2. Rehman, R., Asif, M., Cakmak, I., & Ozturk, L. (2021). Differences in uptake and translocation of foliar-applied Zn in maize and wheat. Plant and Soil, 462, 235-244.